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Abstract

We present a new family of high-resolution, non-oscillatory semi-discrete central schemes for the approx-
imate solution of the ideal Magnetohydrodynamics (MHD) equations. This is the second part of our work,
where we are passing from the fully-discrete, staggered schemes utilized in [4] to a semi-discrete formulation
advocated in [17]. This semi-discrete formulation retains the simplicity of fully-discrete central schemes while
enhancing efficency and adding versatility. The semi-discrete algorithm offers a wider range of options to
implement its two key steps: non-oscillatory reconstruction and evolution. Along with the description of the
numerical methods employed, we present several prototype MHD problems. Solutions of one-dimensional
shock-tube problems and the two-dimensional Kelvin-Helmholtz and Orszag-Tang problems are carried out
using third- and fourth-order central schemes based on the CWENO reconstructions of Kurganov and Levy,
[15], and Levy et. al., [21]. These results complement those presented in [4] (and the references therein) and
confirm the remarkable versatility of central schemes as black-box, Jacobian-free MHD solvers.

AMS subject classification: Primary 65M10; Secondary 65M05, 76W05

Key words. Multidimensional conservation laws, ideal Magnetohydrodynamics (MHD) equations, high-resolution
central schemes, non-oscillatory reconstructions, Jacobian-free form, semi-discrete schemes.

1 Introduction

In this paper we present third- and fourth-order accurate, non-oscillatory central schemes for the approximate
solution of the equations of ideal Magnetohydrodynamics,

ρt = −∇ · (ρv), (1.1)

(ρv)t = −∇ · [ρvv> + (p +
1
2
B2)I3×3 −BB>], (1.2)

Bt = ∇× (v×B), (1.3)

et = −∇ ·
[( γ

γ − 1
p +

1
2
ρv2

)
v− (v×B)×B

]
. (1.4)

Here, ρ and e are scalar quantities representing respectively, the mass density and the total internal energy,
v = (vx, vy, vz)> is the velocity field with Euclidean norm v2 := ‖v‖2, and B = (Bx, By, Bz)> and B2 := ‖B‖2
represent the magnetic field and its norm. The pressure, p, is coupled to the internal energy, e = 1

2ρv2 + 1
2B2 +

p/(γ − 1), where γ is the (fixed) ratio of specific heats. The system is augmented by the solenoidal constraint,

∇ ·B = 0; (1.5)

that is, if the condition ∇ ·B = 0 is satisfied initially at t = 0, then by (1.3) it remains invariant in time.
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Our work [4] demonstrated the capability of central schemes to accurately and efficiently detect and resolve
the steep gradients that characterize the solutions of (1.1)-(1.4); it suggested further development of higher order,
black-box type central schemes for these equations. In this paper, we present a family of third- and fourth-
order accurate, non-oscillatory semi-discrete central schemes. This semi-discrete formulation, [17], retains the
main advantages of central schemes over the upwind ones, namely, simplicity and efficiency resulting from
using a minimal amount of characteristic information when evolving the solution over staggered grids, the
use of Jacobian-free formulations and avoiding dimensional splitting in multidimensional models. Moreover,
for rth-order methods, the numerical dissipation of the semi-discrete formulation is of order O((∆x)2r−1) vs.
the corresponding fully-discrete version of order O((∆x)2r/∆t); this allows the use of smaller time steps with
considerably less smearing of discontinuities. Finally, the semi-discrete formulation also enjoys a remarkable
adaptability to a wide range of non-oscillatory reconstruction techniques and evolution routines developed
independently of the methods.

We implement these new schemes to approximate the solution of the five MHD prototype problems discussed
in [4]: two one-dimensional Brio and Wu shock tube models originally proposed in [6], two different configurations
— periodic and convective models of the 2D transverse Kelvin-Helmholtz instability problem, and the 2D MHD
vortex system of Orszag and Tang, whose evolution involves the interaction between several shock waves traveling
at various speed regimes, making it a very suitable model to test the robustness of numerical algorithms.

The paper is structured as follows:
In §2, we extend the derivation of the second- and third-order, central semi-discrete schemes presented

in [17, 16, 15] to schemes of arbitrary order r. Starting with the staggered discretization that led to the
fully-discrete central schemes, [23, 22, 13, 20], we evolve separately the smooth and non-smooth parts of the
solution and project the resulting cell averages back onto the original grid. We then pass to the ∆t ↓ 0-limit,
yielding the rth-order semi-discrete formulation of central schemes. This rather general formulation of central
schemes entertains a broad range of options to implement the two main steps of the algorithm: non-oscillatory
reconstruction of point values from cell averages, followed by the evolution of the corresponding point valued
fluxes. In §3 we discuss the non-oscillatory reconstruction techniques and evolution routines that we implement
to approximate the semi-discrete formulation of equations (1.1)–(1.4). For the reconstruction of point values,
we propose an extension of the third-order Central WENO (CWENO) reconstruction of Kurganov and Levy,
[15], and the genuinely two-dimensional fourth-order CWENO reconstruction of Levy et. al., [21], developed
originally in the context of fully-discrete central schemes. For the evolution step, we use third- and fourth-order
strong stability preserving (SSP) Runge-Kutta schemes, [26, 28, 8]. We complete the description of the methods
with a discussion on the divergence-free condition of the magnetic field, ∇·B = 0. This constraint is guaranteed
in the one-dimensional shock tube problems and the two-dimensional Kelvin-Helmholtz instability models, but
not in the Orszag-Tang MHD vortex system. In the latter case, a Leray projection corrector is implemented at
the end of each time-step, replacing the computed magnetic field with its divergence free projection.

In §4 and §5 we describe the prototype MHD problems mentioned above and present the numerical solutions
obtained with our new family of high resolution semi-discrete central schemes. In §4 we report on the one-
dimensional shock tube problems of Brio and Wu [6] and discuss the improved resolution and better control
of spurious oscillations provided by the new schemes. The two-dimensional models and the corresponding
numerical results are presented and discussed in §5. These results confirm the efficiency of central schemes to
accurately compute the solution of MHD equations. The combination of simplicity and high resolution allows
us to obtain solutions comparable to those obtained with higher order upwind schemes, e.g., [6, 7, 14, 25, 24],
without having to refine the computational mesh as in [4]. We therefore retain the simplicity of central schemes
— they eliminate the need for a detailed knowledge of the eigen-structure of the Jacobian matrices and avoid
dimensional splitting and the costly use of (approximate) Riemann solvers that serve as building blocks for
upwind schemes; at the same time, this simplicity is achieved without an increase in the computational work
that was enforced by the finer meshes required with the lower order methods.

2 Semi-discrete Central Schemes

In [4] we demonstrated the robustness of black-box type central schemes to calculate the approximate solutions
of equations (1.1)–(1.4) and discussed the advantages of these methods over those based on upwind differencing.
We also pointed out, however, that the efficiency resulting from a minimal amount of characteristic information
required by central schemes, may be compromised by the low-order accuracy of the schemes, since the latter often
require finer meshes to resolve steep gradients. In order to circumvent this limitation and gain full advantage
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of the simplicity, ease of implementation and efficiency of central schemes, we seek higher order methods.
Although it is possible to carry out a higher order extension of the fully-discrete central schemes discussed in
[4], see e.g., [19, 21], we find the semi-discrete formulation of Kurganov and Tadmor, [17], more advantageous:
it enjoys a reduced numerical dissipation (of order O((∆x)2r−1)) in comparison to that of fully-discrete schemes
(∼ O((∆x)2r/∆t)), and it is derived independently of any reconstruction or evolution algorithm. Indeed,
many of the existing high-order, non-oscillatory reconstruction algorithms and evolution routines can be easily
incorporated into the semi-discrete central formulation, making the simplicity and ease of implementation of
central schemes an attractive alternative.

2.1 One-dimensional Schemes

The solutions of non-linear hyperbolic systems of conservation laws,

ut + f(u)x = 0, (2.1)

and in particular those of equations (1.1)–(1.4), are characterized by the onset and propagation of discontinuities.
The higher order extensions of the first-order Lax-Friedrichs central scheme, [18], that have been developed over
the past two decades, see e.g., [23, 22, 13, 17], provide a rather general approach for solving these type of
problems with only a minimal amount of information on the eigen structure of the Jacobian matrix of f(u)
(indeed, Jacobian-free formulations of central schemes completely avoid the computation of ∂f

∂u ). These schemes

are based on the evolution of the cell averages (we use the usual
∫
−

I

to denote the average, 1/|I | ·
∫

I

),

ūn
α :=

∫
−

Iα

u(ξ, tn)dξ, Iα := [xα −
∆x

2
, xα +

∆x

2
]

while alternating over staggered grids, {Ij} × tn and {Ij+ 1
2
} × tn+1. Dividing (2.1) by ∆x and integrating over

the control volume Ij+ 1
2
× [tn, tn+1] yields an exact discrete statement of the conservation law in terms of these

cell averages,

ūn+1
j+ 1

2
= ūn

j+ 1
2
− 1

∆x

[ ∫ tn+1

tn

f(u(xj+1, τ))dτ −
∫ tn+1

tn

f(u(xj , τ))dτ
]
. (2.2)

The evaluation of the expressions on the right of (2.2) proceeds in two steps.
First, the cell averages {ūn

j+ 1
2
} are recovered by integrating a piecewise non-oscillatory polynomial recon-

struction of the point-values of u(x, tn) from their cell averages {ūn
j } that we denote by

u(x, tn) = R (x; ūn) :=
∑

j

pn
j (x) · 1Ij . (2.3)

This reconstruction procedure is at the heart of high-resolution, non-oscillatory central schemes, and requires the
coefficients of the polynomials {pn

j (x)} to be determined so that R(x; ūn) satisfies the following three essential
properties.

• P1 — Conservation of cell averages: p̄n
j (x) = ūn

j .

• P2 — Accuracy: R (x; ūn) = u(x, tn) + O((∆x)r) for rth-order accurate scheme, wherever u(·, tn) is
sufficiently smooth.

• P3 — Non-oscillatory behavior of
∑

j pj(x) ·1Ij which is characterized in different ways for different recon-
structions. Examples include TVD reconstructions initiated by van Leer and Harten, [31, 10], Number of
Extrema Diminishing (NED) and shape preserving properties of Liu-Tadmor third order scheme, [22], and
the higher order non-oscillatory extensions offered by the Essentially non-oscillatory (ENO) reconstruc-
tions of Harten et. al., e.g., [9], or their Weighted versions (WENO) e.g., [27, 12], and their implementation
within the central differencing framework e.g., [15, 19, 21].

Equipped with the reconstructed point values u(·, tn), the second step evaluates the two time integrals of
f(u(·, τ). Since the solution of (2.2) remains smooth along the lines {x = xj} × [tn, tn+1], a simple quadrature
rule suffices to approximate those integrals. This requires the intermediate values, {ūn+β

j }, which are predicted
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Figure 2.1: Modified central differencing of Kurganov and Tadmor.

either by a Taylor expansion or alternatively, by Runge-Kutta solvers of the ODE uτ = f̂x|x=xj , u(xj , 0) = un
j ,

τ > tn, where f̂x stands for the numerical derivative of f(u).
This type of evolution over staggered grids based on cells with uniform width ∆x does not admit a semi-

discrete limit as ∆t ↓ 0. Instead, a modified approach proposed by Kurganov and Tadmor in [17] and based on
variable size cells (depicted in figure 2.1) yields the desired semi-discrete limit. Here, we extend the derivation
of second- and third-order semi-discrete schemes of [17, 15, 16], to schemes of arbitrary order of accuracy r, [3].

The first step passing from a fully-discrete to a semi-discrete formulation, consists of reducing the size of the
staggered cells covering the Riemann fans. Instead of cells with uniform width ∆x, we use cells with variable
width of order O(∆t), by incorporating the maximal local speed of propagation,

an
j+ 1

2
= max

u∈C(u−
j+ 1

2
,u+

j+ 1
2
)
ρ
(∂f

∂u
(u)

)
; (2.4)

here u−
j+ 1

2
and u+

j+ 1
2

stand, respectively, for the reconstructed values of u to the left and right of the interfacing

breakpoints, u±
j+ 1

2
:= R(xj+ 1

2
±, ūn), and C is the phase curve connecting these two states through the Riemann

fan. For practical purposes, we choose

an
j+ 1

2
:= max

{
ρ
(∂f

∂u
(u−

j+ 1
2
)
)
, ρ

(∂f

∂u
(u+

j+ 1
2
)
)}

,

which is exact for genuinely non-linear and linearly degenerate fields.
This information allows us to repartition the original grid so as to distinguish between sub-cells of width

2an
j+ 1

2
∆tn, where the solution is dictated by the non-smooth Riemann fan,

Ĩj+ 1
2

= [xn
j+ 1

2 ,l, xn
j+ 1

2 ,r] := [xj+ 1
2
− an

j+ 1
2
∆tn, xj+ 1

2
+ an

j+ 1
2
∆tn],

and the other cells of width ∆xj := ∆x −∆tn(an
j− 1

2
+ an

j+ 1
2
), which are beyond the influence of the Riemann

fans so that the solution remains smooth,

Ĩj = [xn
j− 1

2 ,r, xn
j+ 1

2 ,l] := [xj− 1
2

+ an
j− 1

2
∆tn, xj+ 1

2
− an

j+ 1
2
∆tn].
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In non-smooth regions, the cell averages, {w̄n+1
j+ 1

2
} are computed via staggered evolution over the (narrower,

O(∆t)) cells covering the Riemann fans,

w̄n+1
j+ 1

2
:=

∫
−

xn

j+ 1
2 ,r

xn

j+ 1
2 ,l

u(x, tn+1)dx =

=
∫
−

xn

j+ 1
2 ,r

xn

j+ 1
2 ,l

R (x; ūn)dx−
1

2an
j+ 1

2

∫
−

tn+1

tn

[
f(u(xn

j+ 1
2 ,r, τ)) − f(u(xn

j+ 1
2 ,l, τ))

]
dτ, (2.5)

and in the smooth regions, direct integration of (2.1) yields the cell averages {w̄n
j }

w̄n+1
j :=

∫
−

xn

j+ 1
2 ,l

xn

j− 1
2 ,r

u(x, tn+1)dx =

=
∫
−

xn

j+ 1
2 ,l

xn

j− 1
2 ,r

R (x; ūn)dx − 1
∆xj

∫ tn+1

tn

[
f(u(xn

j+ 1
2 ,l, τ))− f(u(xn

j− 1
2 ,r, τ))

]
dτ. (2.6)

The non-staggered cell averages, {ūn+1
j }, are then recovered via a new non-oscillatory piecewise polynomial

reconstruction of the point values of u(x, tn+1) from the new cell averages (2.5) and (2.6),

R (x; w̄n+1) =
∑

j

qn+1
j (x) · 1Ĩj

+ qn+1
j+ 1

2
(x) · 1Ĩ

j+ 1
2

. (2.7)

Projection onto the original grid, {Ij}, (2.7) yields

ūn+1
j :=

∫
−

x
j+ 1

2

x
j− 1

2

R (x; w̄n+1)dx =

=
1

∆x

[ ∫ x
j− 1

2 ,r

x
j− 1

2

qn+1
j− 1

2
(x) dx +

∫ x
j+ 1

2 ,l

x
j− 1

2 ,r

qn+1
j (x) dx +

∫ x
j+ 1

2

x
j+ 1

2 ,l

qn+1
j+ 1

2
(x) dx

]
.

(2.8)

The explicit calculation of the polynomials qn+1
j (x) and qn+1

j+1/2(x) will, in fact, prove to be irrelevant for the
semi-discrete formulation that we seek. As we shall see below, only the cell averages of these q’s matter, and in
the ∆t ↓ 0-limit, these averages are further reduced to the original point values reconstructed at the interfaces,
p(xj± 1

2
, tn). We turn to the details.

Without loss of generality, we assume that the qn+1’s are polynomials of degree r − 1 (required to preserve
the underlying rth-order accuracy) and satisfy properties P1 – P3 for the cell averages (2.5) and (2.6) in the
corresponding cells Ĩj and Ĩj+ 1

2
. We express these polynomials as qn+1

j± 1
2
(x) =

∑r−1
k=0 A

(k)

j± 1
2
(x− xj± 1

2
)k/k!; their

coefficients can be uniquely determined by imposing the conservation constraints1,
∫
−

Ĩj+p

qn+1
j+s (x)dx = w̄n

j+p, p = 0,±1
2
,±1, . . . ,±r − 1

2
, s = −1

2
, 0,

1
2
. (2.9)

Equipped with this notation, the first and last integrals on the right of (2.8) read

∫ x
j− 1

2 ,r

x
j− 1

2

qn+1
j− 1

2
(x) dx =

r−1∑

k=0

[ A
(k)

j− 1
2

(k + 1)!
(x− xj− 1

2
)k+1

]x
j− 1

2
+an

j− 1
2
∆t

x
j− 1

2

=
r−1∑

k=0

(∆t)k+1

(k + 1)!
(an

j− 1
2
)k+1A

(k)

j− 1
2
, (2.10)

and

∫ x
j+ 1

2

x
j+ 1

2 ,l

qn+1
j+ 1

2
(x) dx =

r−1∑

k=0

[ A
(k)

j+ 1
2

(k + 1)!
(x− xj+ 1

2
)k+1

]x
j+ 1

2

x
j+ 1

2
−an

j+ 1
2
∆t

=
r−1∑

k=0

(−1)k (∆t)k+1

(k + 1)!
(an

j+ 1
2
)k+1A

(k)

j+ 1
2
. (2.11)

1The choice of symmetric intervals around Ĩj yield methods of odd order. For methods of even order, it suffices to sacrifice one

of the side constraints, p = ± r−1
2

.
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For the second integral in (2.8), we observe that by property P1 the polynomial qn+1
j (x) must satisfy

∫ x
j+ 1

2
,l

x
j− 1

2
,r

qn+1
j (x) dx = ∆xj w̄

n+1
j =

[
∆x−∆t(an

j− 1
2

+ an
j+ 1

2
)
]
w̄n+1

j . (2.12)

Substituting (2.10)–(2.12) into (2.8), we arrive at a fully-discrete, non-staggered approximation (of arbitrary
order of accuracy r) of the cell averages in (2.2),

ūn+1
j =

r−1∑

k=0

λ(∆t)k

(k + 1)!

[
(an

j− 1
2
)k+1A

(k)

j− 1
2
+(−1)k(an

j+ 1
2
)k+1A

(k)

j+ 1
2

]
+

[
1−λ(an

j− 1
2
+an

j+ 1
2
)
]
w̄n+1

j , λ :=
∆t

∆x
. (2.13)

Given the appropriate reconstructions R(x; ūn), R(x; w̄n), and quadrature rules to evaluate the flux integrals
in (2.5) and (2.6), then (2.13) constitutes a family of fully-discrete non-oscillatory central schemes, e.g., [11,
17]. This type of schemes admit a considerably simpler and more versatile semi-discrete limit, dūj/dt :=
lim∆t→0(ūj(tn + ∆t)− ūj(tn))/∆t. To this end, we rewrite (2.13) as

dūj

dt
= lim

∆t→0

{
1

∆x
(an

j− 1
2
A

(0)

j− 1
2

+ an
j+ 1

2
A

(0)

j+ 1
2
) +

1
∆t

(w̄n+1
j − ūn

j )−
1

∆x
(an

j− 1
2

+ an
j+ 1

2
)w̄n+1

j

+
r−1∑

k=1

λ(∆t)k−1

(k + 1)!

[
(an

j− 1
2
)k+1A

(k)

j− 1
2

+ (−1)k(an
j+ 1

2
)k+1A

(k)

j+ 1
2

]}
= (2.14)

= lim
∆t→0

{
1

∆x
(an

j− 1
2
A

(0)

j− 1
2

+ an
j+ 1

2
A

(0)

j+ 1
2
) +

1
∆t

(w̄n+1
j − ūn

j )− 1
∆x

(an
j− 1

2
+ an

j+ 1
2
)w̄n+1

j

}
.

Since the width of the local Riemann fans approaches zero in the ∆t ↓ 0-limit, i.e., xn
j+ 1

2 ,l
, xn

j+ 1
2 ,r
→ xj+ 1

2
, we

obtain by conservation of cell averages property P1, A
(0)

j± 1
2

= w̄n+1
j± 1

2
so that (2.14) yields,

dūj

dt
= lim

∆t→0

{
1

∆x
(an

j− 1
2
w̄n+1

j− 1
2

+ an
j+ 1

2
w̄n+1

j+ 1
2
) +

1
∆t

(w̄n+1
j − ūn

j )− 1
∆x

(an
j− 1

2
+ an

j+ 1
2
)w̄n+1

j

}
. (2.15)

As ∆t ↓ 0 we end up with limiting values which depend solely on the reconstructed values R(x, u) on both
sides of the interfacing breakpoints, xj± 1

2
, given by

u(xn
j+ 1

2 ,l, t) → pn
j (xj+ 1

2
) =: u−

j+ 1
2
(t)

u(xn
j+ 1

2 ,r, t) → pn
j+1(xj+ 1

2
) =: u+

j+ 1
2
(t); (2.16)

here pn
j (x) and pn

j+1(x) are the polynomial reconstructions of R(x; ūn) at the original time step tn introduced
in (2.3). The corresponding averages in (2.5) approach w̄n+1

j+ 1
2
∼ (∆f)j+ 1

2
/2an

j+ 1
2

where (∆f)j+ 1
2

:= f(u+
j+ 1

2
)−

f(u−
j+ 1

2
), while the smoother averages in (2.6) are of order w̄n+1

j ∼ ūn
j −∆t(∆f)j+ 1

2
. Inserted into (2.15), we

end up with a semi-discrete limit which can be written in its final conservative form,

dūj

dt
= −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
; (2.17)

here Hj± 1
2
(t) are the numerical fluxes given by

Hj+ 1
2
(t) :=

f(u+
j+ 1

2
(t)) + f(u−

j+ 1
2
(t))

2
−

aj+ 1
2
(t)

2
[
u+

j+ 1
2
(t)− u−

j+ 1
2
(t)

]
. (2.18)

Once again, we emphasize that among its several advantages, the versatility of this semi-discrete formulation
is the independence of the specific reconstruction, (2.3), and evolution algorithms which are utilized to recover
the interface values, u−

j+ 1
2

and u+
j+ 1

2
and to evolve the cell averages in (2.17). A description of our particular

choices for these algorithms is provided in §3.
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Figure 2.2: Floor pan for modified central differencing in two-space dimensions.

2.2 Two-dimensional Schemes

Starting with a general hyperbolic conservation law in two space dimensions,

ut + f(u)x + g(u)z = 0, (2.19)

we proceed as in §2.1, and consider the sliding averages of u over the cells Ij,k := [xj−1/2, xj+1/2]×[zk−1/2, zk+1/2],

ūn
j,k :=

∫
−

Ij,k

u(x, z, tn) dx dz,

where ∆x and ∆z represent the space scales in the x- and z-direction respectively.
As in the one-dimensional case, we seek a semi-discrete formulation for the evolution of the cell averages

of the conservation law (2.19). We begin by incorporating the information provided by the local speeds of
propagation, that we approximate by

an
j+ 1

2 ,k := max
{

ρ
(∂f

∂u
(uW

j+1,k)
)
, ρ

(∂f

∂u
(uE

j,k)
)}

, bn
j,k+ 1

2
:= max

{
ρ
(∂g

∂u
(uS

j,k+1)
)
, ρ

(∂g

∂u
(uN

j,k)
)}

; (2.20)

where the cell interface values in the z- and x-direction,

uN
j,k := pn

j,k(xj , zk+ 1
2
), uS

j,k := pn
j,k(xj , zk− 1

2
),

uE
j,k := pn

j,k(xj+ 1
2
, zk), uW

j,k := pn
j,k(xj− 1

2
, zk) (2.21)

are calculated via a non-oscillatory piecewise polynomial reconstruction,

R(x, z; ūn) =
∑

j,k

pn
j,k(x, z)1Ij,k

; (2.22)

the polynomials {pn
j,k(x, z)} are determined so that R(x, z; ūn) satisfies properties analogous to P1 – P3 above.

This information allows us to separate between regions of smoothness, depicted as Dj,k in Fig. 2.2, and regions
of non-smoothness , depicted as the shaded regions. Nine sets of cell averages are calculated as follows:

• In the clear shaded regions, Dj± 1
2 ,k± 1

2
, the solution is not smooth in both directions; staggered evolution

over the control volumes Dj± 1
2 ,k± 1

2
× [tn, tn+1] is used to obtain the new cell averages {w̄n+1

j± 1
2 ,k± 1

2
},

• In the dark shaded regions, Dj± 1
2 ,k and Dj,k± 1

2
, the solution is smooth only in one direction; staggered

evolution is used along the non-smooth interfaces to obtain, respectively, the cell averages {w̄n+1
j± 1

2 ,k
} and

{w̄n+1
j,k± 1

2
},

• To evolve the smooth part of the solution, we integrate the polynomial pn
j,k(x, z) and the corresponding

fluxes over the non rectangular control volume Dj,k× [tn, tn+1]; these cell averages are denoted by {w̄n+1
j,k }.
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This approach allows us to form a new polynomial, denoted R(x, z; w̄n+1), which is reconstructed from these
smooth and non-smooth portions of the solution, and to reproject it back onto the original grid-cells,

ūn+1
j,k =

∫
−

Ij,k

R (x, z; w̄n+1) dx dz. (2.23)

The resulting non-staggered fully-discrete scheme admits a more versatile semi-discrete limit as ∆t→ 0,

d

dt
ūj(t) = −

Hx
j+ 1

2 ,k
(t)−Hx

j− 1
2 ,k

(t)

∆x
−

Hz
j,k+ 1

2
(t)−Hz

j,k− 1
2
(t)

∆z
, (2.24)

with numerical fluxes

Hx
j+ 1

2 ,k(t) =
1
12

[
f(uNW

j+1,k(t)) + f(uNE
j,k (t)) + 4(f(uW

j+1,k(t)) + f(uE
j,k(t))) + f(uSW

j+1,k(t)) + f(uSE
j,k (t))

]

−
aj+ 1

2 ,k(t)

12

(
uNW

j+1,k(t) − uNE
j,k (t) + 4(uW

j+1,k(t)− uE
j,k(t)) + uSW

j+1,k(t)− uSE
j,k (t)

)
, (2.25)

Hz
j,k+ 1

2
(t) =

1
12

[
g(uSW

j,k+1(t)) + g(uNW
j,k (t)) + 4(g(uS

j,k+1(t)) + g(uN
j,k(t))) + g(uSE

j,k+1(t)) + g(uNE
j,k (t))

]

−
bj,k+ 1

2
(t)

12

(
uSW

j,k+1(t)− uNW
j,k (t) + 4(uS

j,k+1(t)− uN
j,k(t)) + uSE

j,k+1(t)− uNE
j,k (t)

)
. (2.26)

This particular version of the numerical fluxes results from using Simpson’s quadrature rule to approximate
the integrals of the fluxes f and g along the cell boundaries [zk− 1

2
, zk+ 1

2
] and [xj− 1

2
, xj+ 1

2
] respectively, and it

incorporates information from the corner interface values,

uNE
j,k := p̂n

j,k(xj+ 1
2
, zk+ 1

2
), uSW

j,k := p̂n
j,k(xj− 1

2
, zk− 1

2
),

uSE
j,k := p̂n

j,k(xj+ 1
2
, zk− 1

2
), uNW

j,k := p̂n
j,k(xj− 1

2
, zk+ 1

2
), (2.27)

into the scheme. These corner values are recovered via the non-oscillatory reconstruction R̂(x, z; ūn) =
∑

p̂n
j,k(x, z)·

1Ij,k
, which may coincide with the original reconstruction, R(x, z; ūn), or, alternatively, interpolate the cell val-

ues along the diagonal directions shown in figure 2.3(b) so as to prevent the onset of spurious oscillations along
those axis.

S
W

E
N

zk

xj

SW

NE

SE

NW

zk

xj

(a) (b)

Figure 2.3: (a) reconstruction in x- and z- directions. (b) diagonal axis for reconstruction.

3 Implementation of Semi-discrete Central Schemes

The framework of semi-discrete scheme described above entertains a wide range of options for the implementation
of their two main ingredients: non-oscillatory reconstruction and evolution. In this section we provide some
examples of non-oscillatory reconstructions, evolution routines and magnetic field corrector that we implemented
for computing the solutions of the system (1.1) – (1.4) presented in §4 and §5 below.
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3.1 Third-order CWENO Reconstruction

Our first choice for the reconstruction of the point values of u is the third-order CWENO polynomial recon-
struction of Kurganov and Levy, [15]. A piecewise quadratic polynomial that satisfies the essential properties
P1, P2, and P3 above is formed as follows: in each cell Ij = [xj− 1

2
, xj+ 1

2
], the polynomials {pn

j (x)} in (2.3) are
written as a convex combination of three polynomials PL(x), PC(x), and PR(x),

pn
j (x) = wLPL(x) + wCPC(x) + wRPR(x),

∑

i∈{L,C,R}

wi = 1, (3.1)

where the linear polynomials

PL(x) = ūn
j +

ūn
j − ūn

j−1

∆x
(x− xj), and PR(x) = ūn

j +
ūn

j+1 − ūn
j

∆x
(x− xj), (3.2)

conserve the pair of cell averages ūn
j−1, ūn

j and ūn
j , ūn

j+1 respectively, and the parabola centered around xj ,

PC(x) = ūn
j −

1
12

(ūn
j−1 − 2ūn

j + ūn
j+1) (3.3)

+
ūn

j+1 − ūn
j−1

2∆x
(x − xj) +

ūn
j−1 − 2ūn

j + ūn
j+1

∆x2
(x− xj)2,

is determined so as to satisfy

cLPL(x) + cRPR(x) + (1− cL − cR)PC(x) = un
j + u′

j(x− xj) +
1
2
u′′

j (x− xj)2,

where un
j , u′

j and u′′
j approximate the point values u(xj , t

n), ux(xj , t
n), and uxx(xj , t

n) given respectively by

un
j := ūn

j −
1
24

(ūn
j−1 − 2ūn

j + ūn
j+1),

u′
j :=

ūn
j+1 − ūn

j−1

2∆x
, and u′′

j :=
ūn

j−1 − 2ūn
j + ūn

j+1

∆x2
. (3.4)

We guarantee the conservation of the cell averages ūn
j−1, ūn

j and ūn
j+1 by any symmetric choice of the weights

ci (e.g., cL = cR = 1/4, cC = 1/2), and the accuracy property, P2, in smooth regions, [20]

pn
j (x) = u(x, tn) +O((∆x)3), x ∈ [xj− 1

2
, xj+ 1

2
].

The non-oscillatory behavior of {pn
j (x)} –property P3, is attained with the non-linear weights

wi =
αi∑
m αm

, with αi =
ci

(ε + ISi)2
, i, m ∈ {L, C, R}, (3.5)

where ε � 1 prevents the denominator from vanishing (for the calculations in §4 and §5 we choose ε = 10−6),
and the smoothness indicators, ISi, provide a local measure of the derivatives of Pi(x),

ISi =
2∑

l=1

∫

Ij

(∆x)2l−1(P (l)
i (x))2dx, i ∈ {L, C, R}, (3.6)

switching automatically to the second-order reconstructions PL and PR in the presence of steep gradients and
avoiding the onset of spurious oscillations, [12, 15, 20]. In this case, they read

ISL = (ūn
j − ūn

j−1)
2, ISR = (ūn

j+1 − ūn
j )2,

ISC =
13
3

(ūn
j+1 − 2ūn

j + ūn
j−1)

2 +
1
4
(ūn

j+1 − ūn
j−1)

2. (3.7)

Remarks:
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1. For this particular reconstruction, the one-dimensional interface values, u−
j+ 1

2
(t) and u+

j+ 1
2
(t), required in

the numerical flux (2.18) take the explicit form

u−
j+ 1

2
(tn) := pn

j (xj+ 1
2
) =

1
2
wL(3ūn

j − ūn
j−1) +

1
12

wC(−5ūn
j+1 + 8ūn

j − ūn
j−1) +

1
2
wR(ūn

j+1 + ūn
j ),

u+
j+ 1

2
(tn) := pn

j+1(xj+ 1
2
) =

1
2
wL(ūn

j+1 + ūn
j ) +

1
12

wC(−ūn
j+2 + 8ūn

j+1 − 5ūn
j ) +

1
2
wR(−ūn

j+2 + 3ūn
j+1).

2. In the case of systems of equations, the choice of these smoothness indicators is, indeed, non-trivial.
The different conserved quantities involved in any particular system (density, momentum, etc.) may
very well develop discontinuities at different points throughout the solution domain that do not affect
every other quantity in the system. Hence, choosing the smoothness indicators individually for each
quantity may cause the scheme to use different stencils for different quantities during the same evolution
step. This can be avoided by either using global smoothness indicators, e.g., an (norm-scaled) average of
the individual ones, or by identifying those that are physically relevant, such as, e.g., the density near a
contact discontinuity (see §4 for our particular choices in the one-dimensional case and [19] for an in-depth
discussion about the selection of smoothness indicators for systems of equations).

In two-space dimensions, one possibility for calculating the interface values in (2.21) and (2.27) is to apply
this one-dimensional third-order reconstruction dimension-by-dimension in the x- and z- directions (Fig. 2.3
(a)), and, if so desired, in the two diagonal directions of the coordinate frame displayed in figure 2.3(b). In
two dimensions, however, we note that the constant term in the central parabola, (3.3), requires an additional
correction (in the transverse direction of the reconstruction) in order to guarantee third-order accuracy when
the point value u(xj , zk, tn) is recovered from the neighboring cell averages,

u(xj , zk, tn) = ūn
j,k −

1
12

(ūn
j−1,k − 2ūn

j,k + ūn
j+1,k)− 1

12
(ūn

j,k−1 − 2ūn
j,k + ūn

j,k+1) +O((max{∆x, ∆z})3).

That is, along the line z = zk, the reconstruction in the x-direction is carried out using the linear polynomials
PL(x, zk) and PR(x, zk) as in (3.2), and the parabola PC(x, zk), given by

PC(x, zk) = ūn
j,k −

1
12

(ūn
j−1,k − 2ūn

j,k + ūn
j+1,k)− 1

12
(ūn

j,k−1 − 2ūn
j,k + ūn

j,k+1)

+
ūn

j+1,k − ūn
j−1,k

2∆x
(x− xj) +

ūn
j−1,k − 2ūn

j + ūn
j+1,k

∆x2
(x − xj)2. (3.8)

The same reconstruction is carried out in the z-direction, holding x = xj fixed.
The corresponding polynomials in the diagonal directions are given by (consult [16] for additional details)

p̂n
j,k(x, z) = ŵLP̂L(x, z) + ŵCP̂C(x, z) + ŵRP̂R(x, z), (3.9)

with

P̂L(x, z) = ūn
j,k +

ūn
j,k − ūn

j−1,k−1

∆

( ∆
2∆z

(z − zk) +
∆

2∆x
(x − xj)

)

P̂C(x, z) = ūn
j,k −

1
12

(ūn
j+1,k+1 − 2ūn

j,k + ūn
j−1,k−1)−

1
12

(ūn
j−1,k+1 − 2ūn

j,k + ūn
j+1,k−1)

+
ūn

j+1,k+1 − ūn
j−1,k−1

2∆

( ∆
2∆z

(z − zk) +
∆

2∆x
(x− xj)

)

+
ūn

j+1,k+1 − 2ūn
j,k + ūn

j−1,k−1

∆2

( ∆
2∆z

(z − zk) +
∆

2∆x
(x− xj)

)2

P̂R(x, z) = ūn
j,k +

ūn
j+1,k+1 − ūn

j,k

∆

( ∆
2∆z

(z − zk) +
∆

2∆x
(x − xj)

)
, (3.10)
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along the SW–NE axis, and

P̂L(x, z) = ūn
j,k +

ūn
j,k − ūn

j+1,k−1

∆

( ∆
2∆z

(z − zk)− ∆
2∆x

(x − xj)
)

P̂C(x, z) = ūn
j,k −

1
12

(ūn
j+1,k+1 − 2ūn

j,k + ūn
j−1,k−1)−

1
12

(ūn
j−1,k+1 − 2ūn

j,k + ūn
j+1,k−1)

+
ūn

j−1,k+1 − ūn
j+1,k−1

2∆

( ∆
2∆z

(z − zk)−
∆

2∆x
(x− xj)

)

+
ūn

j−1,k+1 − 2ūn
j,k + ūn

j+1,k−1

∆2

( ∆
2∆z

(z − zk)− ∆
2∆x

(x− xj)
)2

P̂R(x, z) = ūn
j,k +

ūn
j+1,k+1 − ūn

j,k

∆

( ∆
2∆z

(z − zk)−
∆

2∆x
(x − xj)

)
, (3.11)

along the SE–NW axis where ∆ =
√

(∆x)2 + (∆z)2.
The non-linear weights, ŵi, are also calculated direction by direction according to the one-dimensional recipe

(3.5) with the smoothness indicators given by the norm-scaled average of the componentwise indicators, IS
(m)
i ,

calculated as in (3.7),

ISi =
1
d

d∑

m=1

1
‖u(m)‖2 + ε

IS
(m)
i , i ∈ {L, C, R}, (3.12)

where u(m) stands for the mth component of u, and ‖u(m)‖22 =
∑

j,k |u
(m)
j,k |2∆x∆z represents its `2 norm over

the solution domain.

3.2 CWENO Fourth-order Reconstruction

In §5 below we demonstrate the versatility of the central semi-discrete scheme (2.24)–(2.26) by implementing
the dimension-by-dimension third-order reconstruction described above and the genuinely multi-dimensional
fourth-order CWENO reconstruction of Levy et. al., [21, 3], that recovers the interface point values in (2.21)
and (2.27) via a bi-quadratic polynomial interpolant satisfying the desired conservation, accuracy and non-
oscillatory properties in two-space dimensions. Following is an outline of this fourth-order reconstruction,
originally developed by Levy et. al. within the central, fully-discrete, staggered framework.

In each cell Ij,k, the piecewise polynomial interpolants in (2.22), pn
j,k(x, z), are written as a convex combi-

nation of nine bi-quadratic polynomials, Pj+p,k+q(x, z), that conserve the cell averages {ūn
j+p,k+q}1p,q=−1 and

approximate the pointvalues of u(x, z, tn) within fourth-order accuracy,

pn
j,k(x, z) =

1∑

p,q=−1

wp,q
j,kPj+p,k+q(x, z),

1∑

p,q=−1

wp,q
j,k = 1, wp,q

j,k ≥ 0; (3.13)

where the polynomials Pj,k(x, z) have the form (omitting, for simplicity, the j and k indeces in the coefficients
{bm}),

P n
j,k(x, z) = b0 + b1(x− xj) + b2(z − zk) + b3(x− xj)(z − zk)

+ b4(x− xj)2 + b5(z − zk)2 + b6(x − xj)2(z − zk)
+ b7(x− xj)(z − zk)2 + b8(x− xj)2(z − zk)2. (3.14)

The 9 conservation constraints,
∫
−

x
j+ 1

2
+p∆x

x
j− 1

2
+p∆x

∫
−

z
k+ 1

2
+q∆z

z
k− 1

2
+q∆z

Pj,k(x, z)dzdx = ūn
j+p,k+q , p, q = −1, 0, 1, (3.15)
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uniquely determine the 9 coefficients {bm},

b0 = ūn − ∆x2

24
ûxx −

∆z2

24
ûzz +

∆x2∆z2

242
ûxxzz,

b1 = ûx −
∆z2

24
ûxzz, b2 = ûz −

∆x2

24
ûxxz,

b3 = ûxz, b4 =
1
2
ûxx −

∆z2

48
ûxxzz,

b5 =
1
2
ûzz −

∆x2

48
ûxxzz, b6 =

1
2
ûxxz,

b7 =
1
2
ûxzz, b8 =

1
4
ûxxzz;

where the divided differences

ûxj,k
=

ūn
j+1,k − ūn

j−1,k

2∆x
, ûzj,k

=
ūn

j,k+1 − ūn
j,k−1

2∆z
,

ûxxj,k
=

ūn
j+1,k − 2ūn

j,k + ūn
j−1,k

∆x2
, ûzzj,k

=
ūn

j,k+1 − 2ūn
j,k + ūn

j,k−1

∆z2
,

ûxzj,k
=

ūn
j+1,k+1 − ūn

j+1,k−1 − ūn
j−1,k+1 + ūn

j−1,k−1

4∆x∆z
,

ûxxzj,k
=

(ūn
j+1,k+1 − 2ūn

j,k+1 + ūn
j−1,k+1)− (ūn

j+1,k−1 − 2ūn
j,k−1 + ūn

j−1,k−1)
2∆x2∆z

,

ûxzzj,k
=

(ūn
j+1,k+1 − 2ūn

j+1,k + ūn
j+1,k−1)− (ūn

j−1,k+1 − 2ūn
j−1,k + ūn

j−1,k−1)
2∆x∆z2

,

ûxxzzj,k
=

1
∆x2∆z2

[
(ūn

j+1,k+1 − 2ūn
j+1,k + ūn

j+1,k−1)− 2(ūn
j,k+1 − 2ūn

j,k + ūn
j,k−1)

+(ūn
j−1,k+1 − 2ūn

j−1,k + ūn
j−1,k−1)

]
,

serve to approximate the values of u and its partial derivatives at the points (xj , zk) within the fourth-order
accuracy constraints of the method.

As in the third-order reconstruction, the non-linear weights in (3.13), wp,q
l,k , are computed so as to provide

maximum accuracy in smooth regions and prevent oscillations in the non-smooth regions by eliminating the
contribution of polynomials with steep gradients across the cell interfaces. For each cell nine weights are
calculated,

wp,q
j,k =

αp,q
j,k∑

m,n αm,n
j,k

, with αp,q
j,k =

cp,q
j,k

(ε + ISp,q
j,k )2

, m, n, p, q = −1, 0, 1, (3.16)

and the linear coefficients, cp,q
j,k , chosen so that symmetry guarantees fourth-order accuracy,

c0,0
j,k =

1
2

and cp,q
j,k =

1
16

, ∀ p, q 6= 0;

convexity,
∑1

p,q=−1 cp,q
j,k = 1, cp,q

j,k ≥ 0, guarantees conservation.

Global smoothness indicators are chosen according to (3.12). Unlike the third-order reconstruction where
the exact calculation of the individual smoothness indicators is trivial and renders simple formulas, i.e., (3.7),
in this fourth-order case, the exact calculation of the local L2-norm of the partial derivatives of the polynomials
P p,q

j,k is impractical. Instead, a Gaussian quadrature formula is used to approximate the integrals

ISp,q
j,k =

∫

Ij,k

(|∂xPj+p,k+q |2 + |∂zPj+p,k+q |2 + (∆x)2|∂xxPj+p,k+q |2 + (∆z)2|∂zzPj+p,k+q |2) dx dz.

This approach still serves the purpose of automatically detecting and re-directing the numerical stencils in the
direction of smoothness, thus preventing the onset of oscillations.
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3.3 Time Evolution: SSP Runge-Kutta Solvers

With the interface values (2.16), (2.21), and (2.27) computed with either one of the above CWENO recon-
structions, we denote, for any grid function w = {wj(t)}, the numerical fluxes on the right of (2.17) and (2.24)
by

C[w(t)] = −
Hj+ 1

2
(w(t)) −Hj− 1

2
(w(t))

∆x
(3.17)

and

C[w(t)] = −
Hx

j+ 1
2 ,k

(w(t)) −Hx
j− 1

2 ,k
(w(t))

∆x
−

Hz
j,k+ 1

2
(w(t)) −Hz

j,k− 1
2
(w(t))

∆z
, (3.18)

respectively, and evolve the solution u(0) := ūn
j from tn, to tn+1 with an appropriate ODE solver. For the

numerical calculations reported in §4 and §5, we choose the Strong Stability-preserving (SSP) Runge-Kutta
discretizations [26, 8]. In particular, for the third-order results, we evolve the solution according to

u(1) = u(0) + ∆tC[u(0)],

u(2) = u(1) +
∆t

4
(−3C[u(0)] + C[u(1)]),

un+1 := u(3) = u(2) +
∆t

12
(−C[u(0)]− C[u(1)] + 8 C[u(2)]). (3.19)

and for the fourth-order results of §5.2

u(1) = u(0) +
∆t

2
C[u(0)],

u(2) = u(1) +
∆t

2
(−C[u(0)] + C[u(1)]),

u(3) = u(2) +
∆t

2
(−C[u(1)] + 2 C[u(2)]),

un+1 := u(4) = u(3) +
∆t

6
(C[u(0)] + 2C[u(1)]− 4C[u(2)] + C[u(3)]) (3.20)

is used to evolved the values reconstructed via the fourth-order CWENO interpolation algorithm of Levy et.
al. of §3.2.

3.4 Magnetic Field corrector

In addition to reconstruction and evolution, our central schemes requires the correction of the magnetic field,
B, in order to guarantee the solenoidal constraint ∇ · B = 0. We satisfy this constraint by updating the cell
averages of the magnetic field at the end of each time step, replacing the computed B, with its divergence-free
projection, Bc. To this end the so called Leray projection is carried out by solving the Poisson equation

∆φ = −∇ ·B (3.21)

with the appropriate boundary conditions. Since the coplanar structure of the problem guarantees ∂By/∂y = 0,
only the components Bx and Bz need to be updated. We use a fast Poisson solver for the standard five point
discretization of the potential φ, and central differences for the divergence of the magnetic field, ∇ · B. The
corrected — divergence free — magnetic field, Bc, is then realized as

Bc = B +∇φ. (3.22)

Applying the divergence operator∇ = (∂/∂x, ∂/∂z) to both sides of (3.22), one can easily verify that ∇·Bc = 0.
We use here only one out of several methods to enforce the so-called ‘constrained transport’ and we refer the
reader to [5], [25] and the references therein for a general discussion and [30] for handling the solenoidal constraint
in the context of MHD schemes over staggered grids.

The solution of (3.21) is computed with a C translation of Fishpack, a collection of Fortran subprograms
which utilize cyclic reduction to directly solve second- and fourth-order finite difference approximations to
separable elliptic Partial Differential Equations, [1, 2].
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4 One-dimensional Numerical Results

In one space dimension, equations (1.1)–(1.4) admit the conservative form (2.1) with

u = (ρ, ρvx, ρvy, ρvz, By, Bz, e)>, (4.1)
f(u) = (ρvx, ρv2

x + p∗ −B2
x, ρvxvy −BxBy, ρvxvz −BxBz, Byvx − Bxvy,

Bzvx −Bxvz , (e + p∗)vx −Bx(Bxvx + Byvy + Bzvz))>, (4.2)

where p∗ = p + 1
2B2 stands for the total pressure (static plus magnetic).

In this section we present numerical simulations of this one-dimensional MHD equations, (2.1)–(4.2). The
results were obtained using the semi-discrete central scheme (2.17)–(2.18) with the pointvalues u+

j+ 1
2
(t) and

u−
j+ 1

2
(t), (2.16), computed via the CWENO third-order reconstruction of §3.1, and evolved according to Shu’s

third-order SSP Runge-Kutta scheme as outlined in §3.3. The schemes are implemented for computing the
approximate solution of two coplanar shock tube MHD models described by Brio and Wu in [6]. We use a
uniform grid in the space discretization, and in both cases we choose the time step dynamically with CFL
restriction

∆t = 0.475
∆x

maxk |ak(u)|
, (4.3)

where {ak(u)}k are the eigenvalues of the Jacobian matrix of f(u).

4.1 Brio–Wu Shock Tube Problem

The first one dimensional Riemann problem we consider consists of a shock tube with two initial equilibrium
states, ul and ur, given by

(ρ, vx, vy, vz, By, Bz, p)> =
{

(1.0, 0, 0, 0, 1.0, 0, 1.0)> for x < 0,
(0.125, 0, 0, 0,−1.0, 0, 0.1)> for x > 0,

(4.4)

and complemented with the constant values of Bx ≡ 0.75 and γ = 2. The problem is solved for x ∈ [−1, 1]
with 800 grid points, and numerical results are presented at t = 0.2. Figure 4.1 show the density, the x− and
y−velocity components, the y−magnetic field, and pressure profiles.

The hydrodynamical data of this problem is the same as that in Sod’s shock tube problem of gas dynamics.
The variety of MHD waves, however, poses a considerable challenge for high-resolution such as the black-box
central schemes described in this paper. The solution of this problem consists of a left–moving fast rarefaction
wave (FR), a slow compound wave (SM) which results from an intermediate shock that changes By from 0.58
to −0.31 and a slow rarefaction that changes By from −0.31 −0.53, a contact discontinuity (C), a right–moving
slow shock (SS), and a right–moving fast rarefaction wave (FR). Note that the solution to this problem is not
unique if Bz and vz are not identically zero.

The results in figure 4.1 are in agreement with those previously reported in [4], and are comparable with
the second order upwind computations of Brio and Wu in [6], and with the fifth order WENO computations
presented by Jiang and Wu in [14]. In fact, the present results show a better control of the oscillations that
typically appear at the trailing edge of the right-moving fast rarefaction wave when high resolution schemes
are employed. This better better control is due to our choice of smoothness indicators. Our various numerical
experiments show that –in the absence of characteristic information– the average of the smoothness indicators of
the density, ρ, and transverse magnetic field, By, (scaled by their l2 norm) is the best combination for selecting
a single stencil for reconstruction and evolution of all the conserved quantities in the system. Our numerical
confirm the ability of central schemes, whether in their fully-discrete or semi-discrete formulations, to capture
the main features of the discontinuous MHD solutions, while avoiding any characteristic information other than
an estimate of the maximal speed of propagation, maxk |ak(u)|.

4.2 Brio–Wu High Mach Shock Tube Problem

The following shock tube model proposed by Brio and Wu in [6], is commonly used to check the robustness of
the numerical schemes for high Mach number problems. The initial equilibrium states, ul and ur, are given by

(ρ, vx, vy, vz, By, Bz, p)> =
{

(1.0, 0, 0, 0, 1.0, 0, 1000)> for x < 0,
(0.125, 0, 0, 0,−1.0, 0, 0.1)> for x > 0,

(4.5)
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Figure 4.1: Results of Brio-Wu shock tube problem at t = 0.2 computed with 800 grid points using third-order
CWENO reconstruction, (3.1), and Shu’s SSP Runge-Kutta solver, (3.19).

and complemented with the values of Bx ≡ 0, and γ = 2. The Mach number of the right–moving shock wave is
15.5. If the plasma pressure is replaced by the sum of the static and magnetic pressures–denoted by p∗ above,
this model becomes a standard hydrodynamical Riemann problem. The solution is presented at t = .012,
x ∈ [−1, 1], with 200 grid points and with CFL number 0.475, consult (4.3).

The solution of this second Riemann problem consists of a left–moving fast rarefaction wave (FR), followed
by a tangential discontinuity (TD), and a right moving fast shock (FS) with Mach number 15.5. Across the
tangential discontinuity, the density, the magnetic field and the pressure can change, but both, the fluid velocity
and the total pressure, p + B2

2 are continuous.
As in the previous problem, our results are comparable to those reported in [4], [6], and [14] with second-order

central and second- and fifth-order upwind scheme, and demonstrate the robustness of the schemes described
in §2.

5 Two Dimensional Numerical Results

In two space dimensions, equations (1.1)–(1.4) admit the conservative form (2.19) with

u = (ρ, ρvx, ρvy, ρvz , Bx, By, Bz, e)>, (5.1)
f(u) = (ρvx, ρv2

x + p∗ −B2
x, ρvxvy −BxBy, ρvxvz −BxBz, 0, Byvx −Bxvy ,

Bzvx −Bxvz, (e + p∗)vx −Bx(Bxvx + Byvy + Bzvz))>, (5.2)
g(u) = (ρvz , ρvzvx −BzBx, ρvzvy −BzBy, ρv2

z + p∗ −B2
z , Bxvz −Bzvx,

Byvz −Bzvy , 0, (e + p∗)vz −Bz(Bxvx + Byvy + Bzvz))>. (5.3)

In this section we present the numerical solutions of two prototype models of two–dimensional MHD equa-
tions. For the first problem —the Kelvin–Helmholtz instability with transverse magnetic field configuration,
we consider two different sets of boundary conditions in the x−direction: periodic in the first case and a free
outflow boundary in the second convective setup. The second problem was introduced by Orszag and Tang
in [24] as a simple model to study MHD turbulence, and has become a standard model to validate numerical
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Figure 4.2: Results of Brio-Wu high Mach problem at t = 0.012 computed with 200 grid points using third-order
CWENO reconstruction, (3.1), and Shu’s SSP Runge-Kutta solver, (3.19).

algorithms. In both cases, the time scale, ∆t is determined dynamically with CFL=0.475,

∆t =
0.475√

(maxk |ak(u)|/∆x)2 + (maxk |bk(u)|/∆z)2
(5.4)

where {ak(u)}k and {bk(u)}k represent the eigenvalues of the Jacobian matrices of f(u) and g(u) respectively.

5.1 Transverse Kelvin–Helmholtz Instability

The Kelvin–Helmholtz instability arises when two superposed fluids flow one over the other with a relative
velocity. It models, for example, the important mechanism for the momentum transfer at the Earth’s magne-
topause boundary, which separates the solar wind from the Earth’s magnetosphere, [14]. We approximate the
solution of he two dimensional periodic and convective models with transverse magnetic field configuration with
the semi-discrete scheme of Kurganov and Tadmor, (2.24)–(2.26), implemented along with the reconstruction
of §3.1 and the SSP Runge-Kutta solver (3.20).

In both cases, the governing equations are (5.1)–(5.3) are subject to initial conditions

(ρ, vx, vy, vz, Bx, By, Bz, p)> = (1.0, vx0 + ṽx0, 0, 0, 0, 1.0, 0, 0.5)>, (5.5)

where

vx0 =
v0

2
tanh

(z

a

)
, and (5.6)

ṽx0 =
{
−ṽ0 sin ( 2πx

λ ) 1
1+z2 , if− λ

2 < x < λ
2

0, otherwise,
(5.7)

with v0 = 2, ṽ0 = −0.008, λ = 5π and a = 1. Also, the grids are stretched in the z−direction with a Roberts
transformation, [14],

z ← H sinh (τz/2H)
sinh (τ/2)

, τ = 6, (5.8)
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which renders a denser grid near z = 0 where the effect of the small initial perturbation ṽx0 is more noticeable,
and a coarser grid near z = ±H , where little action takes place.

In the periodic case, the computational domain is [−L
2 , L

2 ]×[0, H ], with L = 5π and H = 10. The free outflow
condition is applied at the top boundary, z = H , and the bottom boundary values are recovered by symmetry,
since ρ, p, and By are symmetric, and vx and vz are antisymmetric under the transformation (x, z)→ (−x,−z).
In figure (5.1), we present solutions at t = 144, with 72× 45 and 96× 60 grid points.

The resolution and accuracy of our results are comparable to those reported in [4] obtained, over two grids of
sizes 96×96 and a 192×192 respectively, with the second-order staggered central scheme of Jiang and Tadmor;
the gas kinetic scheme of Tang and Xu, [29], using a 200× 200 uniform grid, and to those obtained with Jiang
and Wu’s fifth-order WENO scheme, [14], over two grids of sizes 48× 30 and 96× 60, respectively. The higher
computational cost of the third-order reconstruction as compared to that of the fully-discrete second-order
scheme we used in [4] is compensated by the fewer number of grid points needed to resolve accurately the steep
gradients that characterize the solution.
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Figure 5.1: Results of transverse Kelvin-Helmholtz instability with periodic x−boundary conditions computed
with third order scheme. Left column uses 72 × 45 points and right column uses 96 × 60 grids respectively.
There are 20 contours for density and pressure. Red–high value, blue–low value. Density ranges from 0.79 to
1.2, pressure range from 0.32 to 0.71 and maximum value for the velocity is 1.25.

In the convective setup, the initial conditions and perturbation are the same as in the periodic setup, (5.5)–
(5.7). In this case, the free outflow condition is applied also in the x-direction over the computational domain
[−L

2 , L
2 ]× [0, H ]; where H = 20 and L = 55π, with L >> λ–so chosen to allow the excitation to convect freely

without disturbing the x−boundaries. The values of the bottom boundary of the computational domain, z = 0,
are recovered by symmetry as in the periodic configuration.

Figures 5.2 and 5.3 display the solution over the region [−50, 50]× [−20, 20] computed with 792× 92 grid
points over computational domain at t = 120 and t = 145 respectively. The values of the bottom half of the
solution domain are recovered using the same symmetry conditions as used to reconstruct the bottom boundary.
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Figure 5.2: Solution of convective Kelvin-Helmholtz instability at t=120, computed with third order scheme on
a 792× 72 grid. The density ranges from 0.63 to 1.3, and the pressure ranges from 0.20 to 0.85, the maximum
value for the velocity is 1.54.
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Figure 5.3: Solution of convective Kelvin-Helmholtz instability at t=145, computed with third order scheme on
a 792× 72 grid. The Density ranges from 0.43 to 1.3, pressure ranges from 0.10 to 0.86 and maximum value for
the velocity is 1.94.
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zdxdz), integrated over [−L/2, L/2]×
[−H, H ], for both periodic and convective Kelvin-Helmholtz instability. The results for the periodic case with
96× 96 and 192× 192 grid points are represented by a dashed and a doted curve respectively. The convective
configuration is represented by a solid line.
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5.2 Orszag–Tang MHD Turbulence Problem

This model considers the evolution of a compressible Orszag-Tang vortex system. The evolution of the vortex
system involves the interaction between several shock waves traveling at various speed regimes [14, 32], which
makes the problem useful to validate the robustness of numerical schemes.

The initial data is given by

ρ(x, z, 0) = γ2, vx(x, z, 0) = − sin z, vz(x, z, 0) = sin x,

p(x, z, 0) = γ, Bx(x, z, 0) = − sin z, Bz(x, z, 0) = sin 2x

where γ = 5/3. With this data, the RMS values of the velocity and magnetic fields are both 1; the initial
average Mach number is 1, and the average plasma beta is 10/3.

We solve the problem in [0, 2π]× [0, 2π], with periodic boundary conditions in both x- and z-directions. For
this problem we implement the fourth-order reconstruction of §3.2 and the SSP Runge-Kutta fourth-order ODE
solver (3.20) using a uniform grid with 192× 192 points.

In this problem, the numerical scheme fails to satisfy the divergence free constraint of the magnetic field,
∇·B = 0. In order to guarantee this condition and avoid numerical instability, we project the updated magnetic
field B into its divergence free component at the end of every time iteration by applying the correction (3.21)–
(3.22).
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Figure 5.5: Fourth-order solution of Orszag–Tang MHD turbulence problem with a 192× 192 uniform grid at
t = 0.5. There are 20 contours for density and pressure. Red –high value, blue –low value. Density range from
2.1 to 5.9, pressure range from 1.0 to 5.8. The maximum values of |v| and |B| are 1.6 and 1.6 respectively.

Figures 5.5–5.7 display the solution of the Orszag-Tang vortex system at t = 0.5, t = 2, and t = 3 respectively.
These simulations were performed with 192×192 grid points using the fourth-order, genuinely multidimensional,
CWENO reconstruction of §3.2 SSP Runge-Kutta solver (3.18)–(3.20). These results demonstrate the ability
of higher-order central schemes to resolve the shocks that the vortex system develops while maintaining the
simplicity and ease of implementation typical of this black-box type of finite-difference schemes. We also note
that similar results were obtained with the dimension-by-dimension third-order reconstruction and the Runge-
Kutta solver (3.19) using a 288× 288 mesh. The inproved resolution of the fourth-order scheme allows us to
compute accurate approximations using coarser grids than those required by lower order schemes, thus reducing
the computational cost of this type of simulations; an advantage that is more evident in higher space dimensions.
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Figure 5.6: Second-order solution of Orszag–Tang MHD turbulence problem with a 384× 384 uniform grid at
t = 2. There are 20 contours for density and pressure. Red–high value, blue–low value. Density ranges from
0.62 to 6.3, pressure ranges from 0.14 to 7.0. The maximum values of |v| and |B| are 1.6 and 2.8 respectively.
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Figure 5.7: Fourth-order solution of Orszag–Tang MHD turbulence problem with a 192× 192 uniform grid at
t = 2. There are 20 contours for density and pressure. Red –high value, blue –low value. Density range from
0.62 to 6.3, pressure range from 0.14 to 7.0. The maximum values of |v| and |B| are 1.6 and 2.8 respectively.
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192× 192 grid points.
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